LAKE LADOGA

A view on the lakeshore Photo. Photo: I. M. Raspopov  
 

A. LOCATION

  • Karelia, Russia.*
  • 59:54-61:47N, 29:47-32:58E; 4.8 m above sea level.

  • * Place names are not updated.
 

B. DESCRIPTION

    Lake Ladoga is the largest freshwater body in Europe with a surface area of 18,135 km2 including the islands area of 460 km2. The volume of the lake is 908 km3, its average and maximum depths being 51 and 230 m, respectively. The shallowest southern part has a mean depth of 13 m (the lake is divided into four zones taking depth distribution into account).
    Lake Ladoga is situated on the borderline between the crystalline Baltic shield and Great Russian Plain, and the geological history of its drainage basin (250,600 km2) is very complicated (1). Differences in the geological structure of the watershed are reflected in the structure of both shores and depressions of the lake. Seven types of bottom sediments were distinguished (2); blocks, boulders, pebbles and gravel, sand of various grain size, coarse- grained aleurite silt, fine-grained aleurite silt, and clayey silt. Clayey silt accumulates in the deepest areas of the lake. The other types of bottom sediments are characteristic of littoral and declinate zones.
    The principal components of water balance are inflow and outflow, accounting for 86 and 92% of the total inputs and outputs, respectively. Since 1981 the annual inflow has varied between 77.8 and 89.0 km3 (3). Lake thermic regime is characterized by the existence of thermal bar in periods of spring warming and autumn cooling. Thermal bar divides the lake into two regions - thermoactive and thermoinert, whose water masses differ one from another by physicochemical characteristics (4). Lake Ladoga is influenced by wind waves. The maximal measured wave height amounts to 5.8 m and the maximal length to 60 m (3).
    Ladoga water is poorly mineralized - average value of mineralization is 62 mg l-1. Once favorable oxygen regime is now getting worse under the influence of anthropogenic eutrophication during the last 10 years. Great attention is being paid to the preservation of water quality in Lake Ladoga. In 1984 the Council of Ministers of USSR adopted a resolution on protecting measures for Lake Ladoga and its basin. Implementing this resolution, a large pulp and paper plant in Priozersk was closed. The governmental program "Ladoga" has been elaborated and is being carried out by cooperation of several different institutions (Q).
?

C. PHYSICAL DIMENSIONS (3)

     
    Surface area [km2] 18,135
    Volume [km3] 908
    Maximum depth [m] 230
    Mean depth [m] 51
    Water level Unregulated
    Normal range of annual water level fluctuation [m] 0.7
    Length of shoreline [km] 1,570*
    Residence time [yr] 12.3
    Catchment area [km2] 70,120
    * Not including the catchments of upstream lakes (cf. Fig. EUR-37-02).
     
 

D. PHYSIOGRAPHIC FEATURES

D1 GEOGRAPHICAL
  • Sketch map: Fig. EUR-37-02.
  • Bathymetric map: Fig. EUR-37-01.
  • Names of main islands

  • Riekkalansaari (55.3 km2), Mantsinsaari (39.4 km2) and Valaam (27.8 km2).
  • Number of outflowing rivers and channels (name): 1 (Neva R.).
  • Others

  • Physiographic zoning map: Fig. EUR-37-03.
D2 CLIMATIC (5, 6)
  • Climatic data at Sucho Island, 1881-1960
     
    Mean temp. [deg C]
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann.
    -7.8 -8.8 -5.9 -0.3 5.5 11.8 16.3 15.6 11.1 5.2 0.1 -4.7 3.2
    Precipitation [mm]
    26 24 24 29 43 46 54 55 58 49 39 28 475
     
  • Number of hours of bright sunshine: 1,784 hr yr-1.

    Fig. EUR-37-01
    Bathymetric map [m](Q).
 

    Fig. EUR-37-02
    Sketch map of the whole Ladoga Lake basin (Q).
 

    Fig. EUR-37-03
    Physiographic zoning of the lake.
 
  • Solar radiation: 9.2 MJ m-2 day-1.
  • Water temperature [deg C]
     
    Northern part of the lake, 1959-1988
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.1 0.8 0.0 - - 0.4 7.6 13.4 15.7 11.9 7.8 4.0 1.8
     
  • Freezing period: February-May.
  • Mixing type: Dimictic.
 

E. LAKE WATER QUALITY (Q)

E1 TRANSPARENCY [m]
     
    Station 1, 1990
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    1 - - - - 3.6 - 3.4 - - 4.4 - -
    Station 2, 1990
    - - - - 4.0 - 3.3 - - 3.7 - -
    Station 3, 1990
    - - - - 3.5 - 3.1 - - - - -
    Station 4, 1990
    - - - - 3.5 - 3.5 - - - - -
    Station 5, 1990
    - - - - 5.0 - 3.3 - - 3.3 - -
    Station 6, 1990
    - - - - 1.8 - 3.1 - - 3.1 - -
    Station 7, 1990
    - - - - 3.7 - 3.0 - - 3.3 - -
    Station 8, 1990
    - - - - 3.6 - 2.5 - - 3.2 - -
    Station 9, 1990
    - - - - 1.5 - 2.7 - - 2.7 - -
    Station 10, 1990
    - - - - 2.8 - 2.7 - - 1.9 - -
    Station 11, 1990
    - - - - 1.8 - 2.4 - - - - -
     

    Fig. EUR-37-04
    Observation stations where the transparency was measured (Q).

E2 pH

     
    1981-1982
    Depth [m] Spring Summer Autumn
    S*1 7.40-8.90 7.25-9.50 7.25-7.65
    B*2 7.30-8.75 7.10-8.45 7.25-7.60
    *1 Surface. *2 Bottom.
     
E3 SS: Fig. EUR-37-05.

    Fig. EUR-37-05
    Mean concentration of SS in the ultra-profundal zone, 1979-1990 [mg l-1](Q).

E4 DO [mg l-1/%]

     
    Ultra-profundal zone, 1987-1988
    1987 1988
    Depth [m] Jun Jul Jun Jul Aug
    0 12.8/96 11.0/105 11.8/89 10.6/105 10.0/105
    10 12.8/95 11.3/102 12.8/96 11.62/117 9.41/98
    25 12.8/95 11.8/95 12.8/97 11.87/94 12.47/100
    50 - 12.0/95 12.7/95 11.28/97 12.1/95
    100 12.2/91 12.0/95 12.8/96 12.31/97 12.6/98
    120 11.8/89 12.0/94 11.9/89 11.9/93 11.9/93
     
E5 COD: Fig. EUR-37-06.

    Fig. EUR-37-06
    Seasonal and vertical distribution of organic carbon [mg C l-1] in the ultra- profundal zone (Q).

E6 CHLOROPHYLL CONCENTRATION: Fig. EUR-37-07 and 08.

    Fig. EUR-37-07
    Distribution of spring chlorophyll a concentration [micro g l-1], May 1981 (Q).
 

    Fig. EUR-37-08
    Distribution of summer chlorophyll a concentration [micro g l-1], averages for August 1980-1982 (Q).

E7 NITROGEN CONCENTRATION

  • Total-N [mg l-1]

  • May-June*1 1986: 0.61 (0.45-0.90). July-August*2 1986: 0.60 (0.39-0.90). September-October*3 1986: 0.55 (0.42-0.91). *1 Spring. *2 Summer. *3 Autumn.
E8 PHOSPHORUS CONCENTRATION
  • Total-P [micro g l-1]
     
    Lake zone Coastal Declinate Profundal Ultraprofundal Whole lake
    1988
    Spring 24 (14-59) 25 (16-27) 19 (15-21) 19 (17-20) 20 (14-59)
    Summer 25 (16-70) 20 (12-36) 19 (12-28) 19 (14-30) 19 (12-70)
    Autumn - - - -
    1989 
    Spring 26 (16-40) 24 (18-40) 23 (18-32) 21 (20-24) 22 (16-40)
    Summer 22 (15-26) 20 (14-27) 19 (15-30) 18 (13-24) 19 (13-30)
    Autumn 18 (16-18) 18 (16-26) 18 (15-22) 18 (15-20) 18 (15-26)
     
E10 PAST TRENDS
  • DO
     
    Profundal zone [mg l-1 (% saturation)]
    Depth May Jun Jul Aug Sep Oct
    10 m 1982 - 12.9 (97) 10.7 (84) 10.9 (92) 8.8 (81) -
    1983 8.9 (68) - 11.9 (105) - - -
    1984 11.9 (89) - 10.5 (84) - - 11.0 (98)
    1985 11.6 (109) - 11.8 (97) 11.6 (97) - -
    1986 12.6 (94) - - 11.0 (101) - -
    1987 - 12.8 (95) 11.3 (102) - - -
    1988 12.8 (96) 11.6 (117) - 9.4 (98) - -
    50 m 1981 - - - 12.9 (99) - 10.9 (96)
    1982 - 12.2 (95) 8.9 (70) 11.6 (92) 10.2 (81) -
    1983 9.5 (72) - 13.0 (102) - - -
    1984 13.1 (99) - - - - -
    1985 12.3 (97) - 12.3 (97) 12.5 (99) - -
    1986 12.3 (91) - - 12.0 (94) - -
    1987 - - 12.0 (95) - - -
    1988 - 12.8 (96) 12.3 (97) 12.6 (98) - -
    120 m 1981 12.7 (94) - - 12.4 (97) - 12.1 (95)
    1982 - 12.2 (92) 10.8 (85) 10.6 (83) 10.9 (86) -
    1983 8.0 (61) - 13.0 (102) - - -
    1984 13.2 (99) - 12.6 (99) 12.5 (98) - 12.5 (99)
    1985 12.6 (99) - 12.4 (97) 12.5 (98) - -
    1986 11.8 (89) - - 11.9 (94) - -
    1987 - 11.8 (89) 12.0 (94) - - -
    1988 - 11.9 (89) 11.9 (93) 11.9 (93) - -
     
  • Chlorophyll a

  • Mean-suspended (MS) and maximum (Max) concentrations of chlorophyll a in surface water in different seasons [micro g l-1]
     
    Year Spring (May-Jun) Summer (Jul-Aug) Autumn (Sep-Oct)
    MS Max MS Max MS Max
    1976 2.5 7.8 2.1 6.4 - -
    1977 1.6 7.0 2.3 8.2 0.7 1.5
    1978 2.9 5.9 3.7 38.9 5.0 5.3
    1979 1.6 1.8 3.3 25.0 0.4 1.3
    1980 2.8 10.0 1.8 7.0 1.9 5.3
    1981 2.5 12.6 3.6 47.0 1.2 6.0
    1982 2.4 15.0 2.4 21.5 0.8 6.5
    1983 1.8 8.5 2.5 35.6 0.7 1.8
    1984 1.7 5.3 0.7 3.2 0.4 1.2
    1985 - - 2.0 14.5 0.4 1.3
    1986 2.9 13.5 2.1 7.0 0.6 1.7
    1987 4.2 17.2 1.7 4.2 - -
    1988 1.7 5.1 1.3 14.3 1.6 4.1
    1989 2.1 6.3 2.9 6.4 3.0 13.0 (66.5)
     
  • Nitrogen concentration [mg l-1]
     
    Spring (May-Jun) Summer (Jul-Aug) Autumn (Sep-Oct)
    1981 0.73 (0.60-1.20) 0.74 (0.50-1.42) 0.66 (0.50-0.97)
    1982 0.59 (0.45-0.95) 0.59 (0.43-0.99) 0.55 (0.50-0.87)
    1983 0.83 (0.71-1.44) 0.69 10.61-1.26) -
    1984 0.77 (0.52-1.12) 0.53 (0.42-0.86) 0.66 (10.55-1.12)
    1986 0.61 (0.45-0.90) 0.60 (0.39-0.90) 0.55 (0.42-0.91)
     
  • Phosphorus concentration

  • Total-P [micro g l-1]
     
    Zone Spring Summer Autumn
    Coastal 1981 42 37 49
    1982 35 37 44
    1983 30 36 23
    1984 33 35 38
    1986 30 40 34
    1987 39 50 -
    1988 24 25 -
    1989 26 22 18
    Ultra-profundal 1981 21 29 21
    1982 23 20 19
    1983 24 20 -
    1984 24 24 24
    1986 17 22 26
    1987 21 22 -
    1988 19 19 -
    Whole lake 1981 24 28 21
    1982 24 23 22
    1983 24 24 21
    1984 24 24 23
    1986 18 24 27
    1987 21 24 -
    1988 20 19 -
    1989 22 19 18
     
 

F. BIOLOGICAL FEATURES

F1 FLORA (7, 9)
  • Emerged macrophytes

  • Phragmites australis, Scolochloa festucacea, Glyceria maxima, Scirpus lacustris, Eleocharis palustris, Equisetum fluviatile.
  • Floating macrophytes

  • Nuphar lutea, Polygonum amphibium, Potamogeton natans, Hydrocharis morsus- ranae, Stratiotes aloides, Sparganium emersum.
  • Submerged macrophytes

  • Potamogeton perfoliatus, P. gramineus, Elodea canadensis, Myriophyllum spicatum.
  • Phytoplankton

  • Spring (Aulacosira islandica, Asterionella formosa, Diatoma elongatum), summer (A. formosa, Fragilaria crotonensis, Tribonema affine, Oscillatoria tenuis, O. planctonica, Aphanizomenon flos-aque), autumn (Woronichinia naegeliana, Aulacosira islandica, Tribonema depauperatum, Aphanizomenon flos-aque).
  • Phytoperiphyton

  • Spring (Tabellaria fenestrata, Fragilaria crotonensis), summer (Oedogonium sp., Cladophora glomerata, Ulothrix zonata).
F2 FAUNA (8, 10, 11)
  • Zooplankton

  • Spring (Cyclops abyssorum, Limnocalanus macrurus, Eudiaptomus gracilis, Keratella quadrata, Kellicotia longispina), summer (Asplanchna priodonta, Limnocalanus macrurus, Cyclops abyssorum, Mesocyclops olthonoides, Bosmina obtusirostris, Daphnia cristata).
  • Benthos

  • Pontoporeia affinis, Lamprodrilus isoporus, Peloscolex ferox, Procladius, Cryptochironomus, Isochaetides newaensis, Trissocladius parataricus, Prodiamesa bathyphila, Polypedilum, Stylodrilus heringianus, Potamothrix hammoniensis, Pallasea quadrispinosa.
  • Fish

  • 46 species: Coregonus lavaretus, C. abula, Osmerus eperlanus, Stizostedion luciperca, Perca fluviatilis, Lota lota, Salmo salar.
  • Supplementary notes on the biota

  • Relict species: Pontoporeia affinis, Pallasea quadrispinosa, Mysis oculata var. relicta, Mesidothea entomon.
F3 PRIMARY PRODUCTION RATE (Q) Mean daily rates of phytoplankton production, 1989 [micro C m-2]
     
    Season Lake zone Whole lake mean
    Coastal Declinate Profundal Ultra-profundal
    Spring 160 732 537 164 454
    Summer 1,026 805 943 1,605 1,031
    Autumn 623 119 252 168 275
     
     
    Production rates of basic seasonal complexes of phytoplankton
    Complex Chlorophyll a content [micro g l-1] Daily production [micro g l-1]
    - Spring
    Aulacosira (thermoactive area) 2.7 (0.4-7.2) 324 (19-1,183)
    Aulacosira (thermoinert area) 0.2 (0.02-2.6) 13 (3-36)
    Aulacosira-Asterionella (thermoactive area) 1.7 (0.9-3.5) 171 (65-315)
    Aulacosira-Diatoma (thermoinert area) 2.1 (1.9-4.9) 391 (109-1,050)
    - Summer
    Asterionella 1.4 (0.5-11.7) 45 (13-210)
    Asterionella-Diatoma 3.5 (1.7-8.2) 273 (68-492)
    Asterionella-Tribonema 2.4 (2.3-2.5) 123 (74-452)
    Tribonema 1.6 (0.6-3.3) 180 (49-173)
    Tribonema-Peridinea 1.4 (0.2-3.5) 109 (42-294)
    Fragilaria 1.4 (0.9-1.5) 127 (78-177)
    Oscillatoria 1.6 (0.2-2.4) 270 (120-387)
    Aphanizomenon 2.3 (0.2-21.3) 117 (14-1,390)
    Microcystis 3.0 (0.2-6.3) 237 (7-4,220)
    - Autumn
    Woronichinia 0.6 (0.2-1.0) 69 (42-96)
    Aulacosira-Tribonema 1.1 (0.3-1.6) 27 (2-97)
     
F4 BIOMASS (Q)
  • Macrophytes

  • Mean per water surface: 3.1 [g (dry wt.) m-2]. Phragmites: 929 (529-1,820)[g m-2]. Scirpus: 280-660 [g m-2]. Potamogeton perfoliatus: 105-340 [g m-2].
  • Phytoperiphyton

  • Ulothrix zonata: 200-400*1 [mg cm-2]. Diatoms: ca. 1*2 [mg cm-2]. Periphyton: ca. 2.0*3 [mg cm-2]. *1 On substrata at 0.0-0.5 m depth. *2 At depths more than 0.5 m in the northern part of the lake. *3 In the southern part of the lake.
  • Zoobenthos

  • Mean: 2.5 [g (wet wt.) m-2].
F5 FISHERY PRODUCTS (Q)
  • Annual fish catch [metric tons]

  • 1986: 5,527*. * Total 8,000 including angling.
F6 PAST TRENDS (Q)
  • Phytoplankton production [micro C m-2]
     
    Season Year Lake Zone Whole lake mean
    Coastal Declinate Profundal Ultraprofundal
    Spring 1976 87 46 22 5 40
    1977 351 568 205 53 276
    1978 615 1,090 388 100 511
    1981 526 711 85 16 232
    1982 262 728 51 34 210
    1983 1,515 784 152 121 696
    1984 198 135 52 23 102
    1985 319 240 172 32 199
    1986 439 345 291 40 296
    1987 273 559 24 4 232
    1988 480 585 131 60 327
    1989 160 732 537 164 454
    Summer 1976 71 470 111 230 147
    1977 391 479 375 554 435
    1978 640 1,852 1,527 224 946
    1981 387 902 414 475 434
    1982 310 497 391 576 360
    1983 346 144 67 135 158
    1984 158 227 200 329 221
    1985 2,442 1,809 2,480 3,726 2,482
    1986 554 1,328 1,029 1,575 1,111
    1987 248 250 375 252 291
    1988 751 332 465 251 449
    1989 1,026 805 943 1,605 1,031
    Autumn 1977 55 20 72 7 52
    1981 235 115 85 117 135
    1982 142 89 199 240 174
    1983 14 44 40 40 34
    1984 124 10 9 12 34
    1985 254 216 125 84 172
    1986 90 75 82 48 76
    1987 114 68 84 62 82
    1988 480 220 432 47 314
    1989 623 119 252 168 275
     
Annual production [g C m-2]
    whole lake average Year Production Year Production 1976 14.7 1984 20.6 1977 46.4 1985 139.5 1978 88.1 1986 75.8 1979 48.1 1987 38.1 1982 44.9 1988 65.3 1983 54.5 1989 96.5
  • Trend of the average number of bacterioplankton in summer [1.0E+6 cells ml-1]
     
    Total No. of bacterioplankton
    Year Lake zone Epilimnion Hypolimnion
    1980 Coastal 0.84 -
    Declinate 0.70 0.41
    Profundal 0.61 0.14
    Ultra-profundal 0.42 0.12
    Whole lake 0.67 0.24
    1981 Coastal 0.80 -
    Declinate 1.00 0.39
    Profundal 1.00 0.29
    Ultra-profundal 1.20 0.23
    Whole lake 1.00 0.30
    1982 Coastal 1.00 -
    Declinate 0.85 0.49
    Profundal 0.91 0.36
    Ultra-profundal 0.85 0.34
    Whole lake 0.90 0.40
    1983 Coastal 0.84 -
    Declinate 0.75 -
    Profundal 0.70 -
    Ultra-profundal 0.40 -
    Whole lake 0.72 -
    1984 Coastal 0.50 -
    Declinate 0.70 0.51
    Profundal 0.90 0.43
    Ultra-profundal 0.70 0.47
    Whole lake 0.72 0.47
    1985 Coastal 0.70 -
    Declinate 0.90 0.63
    Profundal 0.90 0.41
    Ultra-profundal 0.90 0.54
    Whole lake 0.86 0.52
     
  • Fishery production [t yr-1]
     
    Year Catch
    1981 6,915
    1982 6,770
    1983 5,540
    1984 6,461
    1985 5,091
    1986 5,527
     

    Fig. EUR-37-09
    Zooplankton biomass [g m-2] at 0-10 m depth in Jul.-Aug., 1983 (Q).
 

    Fig. EUR-37-10
    Biomass of Oligochaeta [mg (fresh wt) m-2](Q).
 

    Fig. EUR-37-11
    Biomass of Amphipoda [mg (fresh wt) m-2](Q).
 

    Fig. EUR-37-12
    Biomass of Mollusca [mg (fresh wt) m-2](Q).
 

    Fig. EUR-37-13
    Biomass of Chironomidae [mg (fresh wt) m-2](Q).
 

    Fig. EUR-37-14
    Biomass of meiobenthos [mg m-2](Q).
 

G. SOCIO-ECONOMIC CONDITIONS (Q)

G1 LAND USE IN THE CATCHMENT AREA
     
    1987
    Area [km2] [%]
    - Natural landscape
    Woody vegetation 51,180 73.0
    Swamp 7,250 10.3
    Others 2,460 3.5
    - Agricultural land
    Crop field 2,140 3.1
    Pasture land 960 1.4
    - Residential area 1,420 2.0
    - Others 4,710 6.7
    - Total 70,120 100.0
     
  • Types of important forest vegetation: Pine and fir.
  • Types of the other important vegetation: Peat-bogs.
  • Main kinds of crops and/or cropping system: Vegetable-growing.
  • Levels of fertilizer application on crop fields: Moderate.
G3 POPULATION IN THE CATCHMENT AREA
     
    1987
    Population Population density [km-2] Major cities (population)
    Urban 688,000 9.8 Nowgorod, Tikhvin,
    Rural 216,000 3.1 Kirishi, Volkhov, Pikalevo, Lodeynoye Pole
    Total 904,000 12.9
     
 

H. LAKE UTILIZATION (Q)

H1 LAKE UTILIZATION 1990
    Source of water, navigation and transportation, sightseeing and tourism, recreation (swimming, sport-fishing, yachting) and fisheries.
H2 THE LAKE AS WATER RESOURCE*
     
    Use rate [m3 sec-1]
    - Domestic 26.3
    - Irrigation
    Agricultural 1.5
    - Industrial 28.2
    - Power plant -
    - Others 1.4
    - Total 57.4
    * With calculation by Leningrad water-supply.
     
 

I. DETERIORATION OF LAKE ENVIRONMENTS AND HAZARDS (Q, 1, 2, 8, 9, 16)

I1 ENHANCED SILTATION
  • Extent of damage: Not serious.
I2 TOXIC CONTAMINATION
  • Present status: Detected but not serious.
  • Metal concentration
     
    Mean/range [g l-1], 1982-1986
    Ion/Lake zone Coastal Declinate Profundal Ultraprofundal Whole lake
    Fe 225 160 118 91 148
    45-1,150 45-1,730 33-890 15-250 15-1,730
    Al 88 63 51 40 60
    12-420 19-240 12-210 10-150 10-420
    Mn 17.0 9.0 5.2 2.2 8.4
    1.8-100 1.2-135.0 1.0-80.0 0.5-7.0 0.5-135.0
    Cu 6.7 6.7 5.8 5.7 6.0
    1.0-22.0 1.0-24.5 1.4-15.5 0.5-18.9 0.5-24.5
    Pb 1.5 1.6 1.5 1.6 1.6
    0.5-4.0 0.5-5.5 0.5-6.0 0.5-4.5 0.5-6.0
     
I3 EUTROPHICATION
  • Nuisance caused by eutrophication

  • Unusual algal bloom (Aulacosira islandica, Diatoma elongatum, Microcystis aeruginosa, Aphanizomenon flos-aque, Woronichinia naegeliana, Tribonema affine), disturbed filtration in cleaning beds.

    Fig. EUR-37-15
    (Q) Changes in the seasonal dynamics of phytoplankton population during the process of anthropogenic eutrophication.
 
  • Nitrogen and phosphorus loadings to the lake [t yr-1]
     
    1987
    Sources Industrial Domestic Agricultural Aerial Natural Total
    T-N - - - - - 81,200
    T-P 2,500 700 1,400 400 1,200 6,200
     
I4 ACIDIFICATION
  • Extent of damage

  • Detected but not serious (due to atmospheric transport).
 

J. WASTEWATER TREATMENTS (Q)

J1 GENERATION OF POLLUTANTS IN THE CATCHMENT AREA
    d) Measurable pollution with limited wastewater treatment.
J2 APPROXIMATE PERCENTAGE DISTRIBUTION OF POLLUTANT LOADS
     
    T-P [%]
    - Point sources
    Municipal (domestic wastewater) 11
    Industrial wastewater 40
    - Non-point sources
    Agricultural runoff 23
    Aerial precipitation 6
    Natural sources 20
    Total 100
     
 

L. DEVELOPMENT PLANS (Q)

    Project "Ladoga".
 

M. LEGISLATIVE AND INSTITUTIONAL MEASURES FOR UPGRADING LAKE ENVIRONMENTS (Q)

M1 NATIONAL AND LOCAL LAWS CONCERNED
  • Names of the laws (the year of legislation)
    1. Principles of Water Laws for USSR and Soviet Republics, Supreme Council of the USSR (1970)
    2. About Measures on Protection Intensification of Baltic Sea from Pollution, Council of Ministers of USSR (1976)
    3. RSFSR Water Code, Supreme Council of RSFSR (1980)
    4. About Additional Measures on Ensuring of Protection and Rational Use of Water and Other Natural Resources in Lakes Ladoga, Onega and Ilmen, Council of Ministers of USSR (1984)
  • Responsible authorities
    1. State Sanitary Inspection
    2. State Fish Inspection
    3. North-Western Administration of State Committee of Hydrometeorology
    4. USSR State Committee for Environment Protection, Leningrad Branch
  • Main items of control
    1. Toxic substances (ions of heavy metals and others)
    2. Phenols, oil, pollutants of industrial, domestic and agricultural origin
M3 RESEARCH INSTITUTES ENGAGED IN THE LAKE ENVIRONMENT STUDIES
  1. Institute of Limnology, Academy of Science of USSR, Leningrad
  2. State Research Institute for Fish Industry (GosNIORCH), Leningrad
 

N. SOURCES OF DATA

  1. Questionnaire filled by Dr. I. M. Raspopov, Institute of Limnology, Academy of Science of USSR, Leningrad. l) Arkhangelsky, A. D. (1947, 1948) Geological Structure and Geological History of the USSR. 415 pp. (I) and 372 pp. (II). Publ. House Ac. Sci. USSR, Moscow (In Russian).
  2. Semenovich, N. I. (1966) Bottom Sediments of Lake Ladoga. Publ. House Ac. Sci. USSR. 124 pp. Moscow and Leningrad (In Russian).
  3. Malinina, T. I. (ed.)(1966) Hydrological Regime and Balance of Lake Ladoga. 324 pp. Publ. House Ac. Sci. USSR, Leningrad (In Russian).
  4. Tikhomirov, A. I. (1982) Thermal Structure of Large Lakes. 232 PP. Publ. House Nauka, Leningrad (In Russian).
  5. Climate of USSR Reference Book (1974) Publ. House Hydrometeoizdat, Leningrad, 284 pp. (In Russian).
  6. Long Standing Data of Conditions and Resources of Inland Surface Waters, 1 (5)(1986) Publ. House Hydrometeoizdat, Leningrad, 688 pp. (In Russian).
  7. Petrova, N.A. (ed.)(1982) Anthropogenic Eutrophication of Lake Ladoga. 304 pp. Publ. House Nauka, Leningrad (In Russian).
  8. Petrova, N.A. & Raspletina, G. F. (eds.)(1987) Natural State of the Lake Ladoga Ecosystem. 213 pp. Publ. House Nauka, Leningrad (In Russian).
  9. Raspopov, I. M. (1985) Higher Auqatic Vegetation of Large Lakes in the Northwestern Area of the USSR. 200 pp. Publ. House Nauka, Leningrad (In Russian).
  10. Menshutkin, V. V., Slepukhina, T. D., Menshutkina, M. V. & Suvorova, T. P. (1986) Distribution of bottom invertebrates, eatable for fish in Lake Ladoga. In: Biological Characteristics of Trade Fish in Lake Ladoga and Finnish Gulf and Their Economical Use, pp. 76-89, Leningrad (In Russian).
  11. Fedorova, G. V. (1987) Fish catch from Lake Ladoga and causes of its fluctuations. Trudy GosNIORCH, Leningrad, 266, pp. 3-10 (In Russian).