RESERVOIR KUJBYSHEVSKOE

A view on the lakeshore

Photo.
Photo: L.A.Vyhrystiuk


A. LOCATION

  • Mari ASSR, Chuvash ASSR, Tatar ASSR, Ulianovsk Region and Samara Region,
    Russia.
  • 56:10-53:20N, 47:30-51:30E; 53 m above sea level.


B. DESCRIPTION

    Reservoir Kujbyshevskoe on the River Volga is the largest riverine water body in Europe and is one of the most important components of the Volga-Kama cascade of reservoirs. Its dam (Volzhskaya Dam) was built near the city of Zhiguliovsk in accordance with the scheme made by the Institute of Hydroproject. The construction of this reservoir was began in October 1955 and completed in May 1957. This multi-purpose artificial water body carries out seasonal, week by and daily regulations of the flows of the Volga. Water discharged through Volzhskaya Dam flows into the Reservoir Saratovskoe which is the next stair in the Volga-Kama cascade.
    The reservoir is located in the eastern part of Russian Plain. The middle course of the Volga where the reservoir is situated was formed several million years ago in Pliocene, and was flooded by the water of Paleo-Caspian Sea during its transgression period.
    The reservoir is more than 400 km long, and consists of several sections or reaches, of which the largest is Cheremshan Bay with a water volume of more than 1 km3. There are many inlets near inflowing river mouths. The right (western) bank is high (up to 300 m) and steep. The submerged bed of the Volga runs near the right bank, forming a zone of maximum depth.
    Major tributaries are the Rivers Viatka, Sviyagha and Bolshoy Cheremshan. Ninety-nine percent of the total inflowing water come from surface runoff, precipitation on the reservoir surface accounting for only 1%. On an average, the Volga contributes 43%, the R. Kama 38%, and the R. Viatka 11% of the total water influx. The input of the Volga water to the reservoir is controlled by six upstream dams and that of the Kama by three other dams.
    The climate of the region is temperate, continental and transitional from humid to semi-arid climate. The northern part of the reservoir is in the forest zone, while its southern part belongs to the forest-steppe region. After the reservoir formation, daily mean temperature in the coastal area became lower by 1.5deg C in spring, and rose by more than 2deg C in autumn.
    There are a lot of cities and towns along the shore of the reservoir. Some of them such as Kazan, Ulianovsk and Tolyatty have grown into large industrial centers of the country. Irrigated lands are widely developed in the catchment area. The growth of productivity in this region is associated with the increase of water use, which, however, negatively affects the environment and sanitary condition of the reservoir's water resources in turn (1, 2, 3, 4, 5, 6).

C. PHYSICAL DIMENSIONS (1)

    Surface area [km2] 5,900
    Volume [km3] 58
    Maximum depth [m] 41
    Mean depth [m] 9.8
    Water level Regulated
    Normal range of annual water level fluctuation [m] 4-6
    Length of shoreline [km] 2,500
    Residence time [yr] 0.24
    Catchment area [km2] 1,200,000

D. PHYSIOGRAPHIC FEATURES

D1 GEOGRAPHICAL
  • Sketch map: Fig. EUR-54-1.

  • Bathymetric map: Fig. EUR-54-2.

  • Number of main islands (name and area): Sedelnikovsky (Reach I), Kreushinsky
    (I), Sviyazhsky (I), Banny (VI), Dalnaya Dubrava (VII), Khryaschevsky (VIII).
  • Number of outflowing rivers and channels (name): 1 (R. Volga).

    Fig. EUR-54-1
    Sketch map of the reservoir, showing the division of reaches (I IX) and the location of sampling stations (black dots) and meteorological stations (stars).

    Fig. EUR-54-2
    Bathymetric map [m].

    Fig. EUR-54-3
    Seasonal variation of water level in the reservoir near Tolyatty City (1).

D2 CLIMATIC
  • Climatic data at Kazan, 1925 1980 (7, 8)

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann.
    Mean temp. [deg C] -13.5 -13.1 -6.5 3.7 12.4 17.0 19.1 17.5 11.2 3.4 -3.8 -10.4 3.1
    Precipitation [mm] 24 22 22 32 42 63 68 64 52 52 37 30 508
    Sengiley, 1925 1980 (7, 8)
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann.
    Mean temp. [deg C] -13.2 -12.5 -6.1 4.8 13.0 17.1 18.7 17.2 11.3 3.6 -3.1 -8.9 3.5
    Precipitation [mm] 26 21 25 30 41 52 57 55 43 43 34 30 457
  • Number of hours of bright sunshine [hr yr-1](1955 1980)
    1,899 at Viazovie and 2,112 at Samara.
  • Solar radiation [MJ m-2 day 1]
    10.6 at Viazovie (1952 1980) and 11.6 at Samara (1958 1980).
  • Water temperature [deg C], 1967 1980 (1)

    Reach I
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 12.1 17.4 20.7 21.0 16.5 8.9 5.6 -
    B* - - - - 12.0 12.5 20.2 20.9 16.4 8.4 5.1 -
    Reach II
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 10.5 16.9 21.4 21.0 15.3 8.0 3.3 -
    B* - - - - 10.5 15.4 20.6 19.9 15.1 7.7 3.5 -
    Reach III
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 10.8 17.2 21.1 20.6 15.8 8.1 4.9 -
    B* - - - - 10.1 15.8 19.2 20.1 15.7 8.0 4.9 -
    Reach IV
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 11.1 17.4 21.1 21.0 16.4 9.0 4.8 -
    B* - - - - 10.7 16.6 19.6 20.2 15.8 8.9 5.0 -
    Reach V
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 10.8 18.4 20.7 21.2 16.8 9.8 6.0 -
    B* - - - - 9.7 15.3 18.1 20.1 16.5 9.8 6.0 -
    Reach VI
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 10.1 17.7 20.9 21.0 16.9 10.6 - -
    B* - - - - 9.8 15.5 19.6 19.6 16.7 9.8 - -
    Reach VII
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 16.7 18.4 21.2 21.5 17.5 11.2 3.2 -
    B* - - - - 9.2 15.3 17.5 19.3 17.0 11.1 3.3 -
    Reach VIII
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 9.6 17.9 20.6 21.1 17.3 11.4 6.1 -
    B* - - - - 7.9 14.1 16.9 19.0 17.2 11.5 - -
    Reach IX
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 11.8 18.1 21.8 20.9 15.7 8.7 6.9 -
    B* - - - - 9.4 15.5 18.7 19.7 15.5 8.6 - -
    * Bottom.
  • Freezing period
    From 4 November to 27 April at Viazovie and from 22 November to 27 April at Tolyatty (1957 1980).
  • Mixing type: Polymictic.

  • Notes on water mixing and thermocline formation
    In the calm weather of summer heating period (May August), temporary thermocline tends to be formed more sharply in less flowing Reaches VII, VIII and IX. When wind-induced mixing takes place for several days, the thermocline is destroyed and vertical isothermy is established over the whole reservoir. In winter, inverse thermal stratification occurs under ice cover in these reaches, owing to the heat accumulation near the bottom. This heat is transferred from reservoir bed to water through the winter (1, 4).

E. LAKE WATER QUALITY

E1 TRANSPARENCY [m](8) (1981-1985)
    Station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    8 - - - - 0.9 1.2 1.4 1.3 1.5 1.6 - -
    21 - - - - 0.7 1.0 1.4 1.0 1.0 0.9 - -
    34 - - - - 0.9 1.3 1.9 1.7 1.7 1.8 - -
    34 - - - - 1.2 1.5 1.7 1.4 1.9 1.5 - -
E2 pH (8)
    Station 8, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 7.3 7.6 7.6 7.7 7.6 7.6 - -
    Station 21, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 7.5 7.9 8.5 7.6 7.8 7.8 - -
    29 - - - - 7.5 7.8 7.6 7.6 7.8 7.8 - -
    Station 34, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 7.5 7.5 8.4 7.9 8.0 7.6 - -
    34 - - - - 7.5 7.5 7.4 7.6 7.8 7.8 - -
    Station 34, 1990
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 8.31 8.18 8.36 8.22 8.05 8.15 - -
    34 - - - - 8.29 8.18 7.98 7.82 8.05 8.22 - -
E3 SS [mg l-1](8)
    Station 34, 1989
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 9.5 35.8 14.3 17.8 16.3 11.0 - -
    34 - - - - 24.3 29.0 17.0 24.0 15.0 11.5 - -

    Fig. EUR-54-4
    Changes of suspended solid concentration (1) and bacterial numbers (2) along the reservoir in 1973. Ordinate: the distance from Volzhskaya Hydro Dam (1).

E4 DO [mg l-1](8)
    Station 8, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 9.7 7.4 7.8 7.1 8.1 10.1 - -
    Station 21, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 10.5 7.8 10.6 9.6 8.8 10.7 - -
    34 - - - - 10.9 6.9 4.9 7.2 8.2 10.9 - -
    Station 34, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 9.9 10.2 9.1 8.3 8.9 10.2 - -
    34 - - - - 9.4 7.8 5.4 3.9 7.9 10.3 - -
    Station 34, 1990
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 12.0 9.1 7.6 8.7 9.1 10.2 - -
    34 - - - - 10.2 8.6 4.2 6.2 8.4 10.1 - -
E5 COD [mg l-1](8)
    Determined by K2Cr2O7 method.
    Station 8, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 23.4 25.9 23.1 24.7 25.8 21.9 - -
    Station 21, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 20.0 22.1 25.6 21.0 22.4 24.5 - -
    34 - - - - 21.1 25.8 27.5 21.8 21.9 22.6 - -
    Station 34, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 25.0 23.5 25.0 26.7 24.0 23.6 - -
    34 - - - - 25.2 23.4 24.4 21.8 24.3 25.0 - -
    Station 34, 1990
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 24.3 24.5 29.4 30.7 20.0 21.2 - -
    34 - - - - 24.7 22.8 22.2 21.0 21.2 20.2 - -
E6 CHLOROPHYLL CONCENTRATION [micro l-1](8)
    Station 34, 1989
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 12.6 13.3 12.6 39.7 8.8 12.5 5.9 -
    34 - - - - 11.9 10.6 4.0 6.3 13.5 19.6 4.9 -
    Station 34, 1990
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 7.5 5.5 50.4 14.6 14.3 3.2 9.4 -
    34 - - - - 9.7 3.9 21.8 2.8 2.5 3.0 9.5 -
    Station 39, 1989
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 1.6 0.3 0.3 - 18.6 15.0 23.3 44.8 18.5 19.2 8.9 -
    9 1.6 0.3 0.0 - 14.6 8.3 10.3 8.2 11.5 19.2 8.9 -
    Station 39, 1990
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 22.5 3.6 6.5 18.5 10.2 4.1 10.7 -
    9 - - - - 19.8 4.2 5.5 5.1 6.4 3.9 10.7 -
E7 NITROGEN CONCENTRATION (8)
  • Total-N [mg l-1]
    Station 8, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 0.90 1.01 0.74 1.18 1.24 1.22 - -
    Station 21, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 1.56 1.27 1.38 0.64 0.84 0.91 - -
    Station 34, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 1.60 1.06 0.82 0.92 0.88 0.92 - -
    Station 34, 1990
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 1.67 1.24 1.35 1.07 1.01 1.43 - -
    34 - - - - 1.63 1.05 0.77 1.17 0.93 1.07 - -
  • Particulate-N [mg l-1]

    Station 34, 1989
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 0.02 0.07 0.10 0.11 0.11 trace - -
    34 - - - - 0.26 0.09 0.03 0.02 0.07 trace - -
E8 PHOSPHORUS CONCENTRATION (8)
  • Total-P [micro l-1]

    Station 8, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 116 95 99 131 96 100 - -
    Station 21, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 110 119 83 104 103 91 - -
    34 - - - - 116 128 94 112 105 118 - -
    Station 34, 1981-1985
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 98 47 63 91 84 98 - -
    34 - - - - 119 35 68 87 91 90 - -
    Station 34, 1990
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 55 56 93 83 117 87 - -
    34 - - - - 54 45 92 126 127 89 - -
  • Particulate-P [micro l-1]

    Station 34, 1989
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0.5 - - - - 7 17 18 16 14 - -
    34 - - - - 4 3 7 19 22 - -
E9 CHLORIDE CONCENTRATION
  • Supplementary notes
    The ranges of water conductivity and total solid content are, respectively, 190-520 micro S and 170-600 mg l-1 in 1987.
E10 PAST TRENDS

    Fig. EUR-54-5
    Trends of the mean concentrations of NH4-N (1) and PO4-P (2) in the surface layer (0.5 m)(8).

    Fig. EUR-54-6
    Trends of pH, DO, COD, Total-N and Total-P in the surface layer (0.5 m)(8).


F. BIOLOGICAL FEATURES

F1 FLORA (8)
  • Emerged macrophytes
    Phragmites australis, Typha angustifolia, T. latifolia, Alisma plantago- aquatica, Carex acuta, Sagittaria sagittifolia, Eleocharis palustris, Equisetum fluviatile, Bolboschoenus maritimus, Cyperus fuscus, Epilobium palustre, Sparganium erectum.
  • Floating macrophytes
    Spirodela polyrhiza, Lemna minor, L. trisulca, Salvinia natans, Hydrocharis morsus-ranae.
  • Submerged macrophytes
    Potamogeton lucens, P. natans, P. pectinatus, P. perfoliatus, Najas marina, Caulinia minor, Utricularia intermedia, Elodea canadensis, Ceratophyllum demersum.
  • Phytoplankton
    Melosira granulata, M. islandica, Cyclotella kuetzingiana, Stephanodiscus hantzschii, S. binderanus, Aphanizomenon flos-aquae, Microcystis aeruginosa, Chlamydomonas monadina, Ankistrodesmus scenedesmus.
F2 FAUNA (8)
  • Zooplankton
    Synchaeta pectinata, Asplanchna priodonta, Brachionus calyciflorus, Keratella quadrata, Daphnia longispina, Chydorus sphaericus, Bosmina longirostris, B. longispina, Leptodora kindtii, Cyclops kolensis, C. vicinus, Mesocyclops leuckarti, Acanthocyclops vernalis, Eudiaptomus gracilis, E. graciloides.
  • Benthos
    Procladius jerrugineus, Chironomus plumosus, Isochaetides newaensis, I. michaelseni, Limnodrilus hoffmeisteri, Potamothrix hammoniensis, P. moldaviensis, Dikerogammarus haemobaphes, Pontogammarus obesus, Dreissena polymorpha, Amesoda solida, Viviparus viviparus, Hypania invalida.
  • Fish
    Acipenser ruthenus*, Clupeonella delicatula caspia* (introduced), Osmerus eperlanus eperlanus (introduced), Esox lucius*, Rutilus rutilus*, Alburnus alburnus*, Blicca bjoerkna*, Abramis brama*, A. ballerus*, Pelecus cultratus*, Stizostedion lucioperca*, St. volgensis*, Perca fluviatilis, Gymnocephalus cernua, Leuciscus idus* (* economically important).
F3 PRIMARY PRODUCTION RATE
  • Phytoplankton production

    Fig. EUR-54-7
    Mean rates of phytoplankton production (A) and organic matter decomposition

  1. for May November in different reaches (1). 1) 1965, 2) 1966, 3) 1967, 4) 1968, 5) 1969, 6) 1970, and 7) 1971 Broad columns represent long-term average values.
  • Bacterial production
    Bacteria production rates [g m-3 day 1] (1984) (8)
    S* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    8 - - - 1.36 0.54 0.24 0.64 0.28 0.13 0.53 - -
    21 - - - 0.51 0.66 0.59 0.46 0.20 0.03 0.41 - -
    34 - - - -0.01 0.36 0.39 0.25 0.12 0.12 0.21 - -
    * Station.
    Bacterioplankton oxygen consumption rates [mg O2 l-1 day 1](8) (1984)
    S Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    8 - - - - 0.82 0.75 0.29 0.55 - - - -
    21 - - - - 0.66 0.34 0.48 0.35 0.41 0.15 - -
    34 - - - - - 0.33 0.20 0.26 0.27 - - -
    Oxygen consumption rates in bottom sediments [mg O2 m-2 day 1](9) (1971)
    S Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    21 - - - - 210 430 210 80 170 230 - -
    34 - - - - 160 550 140 140 210 200 - -
  • Infusoria production
    Infusoria production rates [g m-3] (1989)(8)
    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    Benthic Infusoria - - - - - 44.4 140.0 - 100.0 6.6 - -
    Planktonic Infusoria - - - - - 42.1 118.0 69.8 31.4 10.4 - -
  • Supplementary notes
    The organic matter decomposition at the surface of bottom sediment is estimated to be equivalent to 15 g C m-2 yr-1. It accounts for 24% of the average primary phytoplankton production and 9% of the total organic matter decomposition estimated for 1971 (9).
F4 BIOMASS
  • Biomass of bacteria [g m-3](8)

    S* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    8 - - - - 1.7 0.9 0.6 0.4 0.4 0.4 - -
    21 - - - - 0.7 0.6 0.6 0.4 0.5 0.4 - -
    34 - - - - 0.9 0.5 0.4 0.3 0.3 0.4 - -
    * Station.
    Total bacterioplankton numbers [1.0E+6 ml 1]
    Station 34 , 1989
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0 - - - - 1.9 1.7 1.6 1.8 1.0 1.3 1.6 -
    3-4 - - - - 1.9 1.9 1.8 1.4 1.2 1.1 1.8 -
    3-28 - - - - 2.1 1.4 1.5 1.3 1.1 1.3 1.5 -
    Saprophytic bacteria numbers [103 ml 1]
    Station 34, 1989
    Depth [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    0 - - - - 1.5 0.7 0.2 3.4 0.7 0.3 0.3 -
    3-4 - - - - 0.5 0.3 0.2 2.0 0.3 0.4 0.1 -
    3-28 - - - - 1.0 0.4 0.3 0.8 0.3 0.7 0.1 -
  • Biomass of phytoplankton [g m-3 (wet wt.)](8)

    Station 34, 1989
    S*1 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    B*2 - - - - 2.36 2.12 0.08 1.15 2.85 4.45 2.90 -
    C*3 - - - - 0.06 0.22 0.13 0.88 0.04 0.01 0.02 -
    C*4 - - - - 0.00 0.42 1.39 3.80 0.79 0.22 0.01 -
    P*5 - - - - 0.11 0.93 0.06 1.06 0.10 0.02 0.05 -
    Total - - - - 2.53 3.69 1.66 6.89 3.78 4.70 2.98 -
    *1 Species. *2 Bacillariophyta. *3 Chlorophyta. *4 Cyanophyta. *5 Pyrophyta.
    Station 34, 1990
    S Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    B - - - - 1.90 0.36 0.27 0.61 0.13 0.39 7.41 -
    C - - - - 0.02 0.02 0.05 0.15 0.02 0.01 0.01 -
    C - - - - 0.00 0.01 6.40 2.60 0.50 0.04 0.01 -
    P - - - - 0.11 0.32 0.26 0.35 0.06 0.04 0.02 -
    Total - - - - 2.03 0.71 6.98 3.71 0.71 0.48 7.44 -
    Station 39, 1989
    S Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    B - - - - 7.91 1.71 0.32 2.09 3.70 8.41 5.92 -
    C - - - - 0.08 0.13 0.24 0.79 0.11 0.01 0.01 -
    C - - - - 0.00 0.07 2.13 1.68 0.26 0.45 0.10 -
    P - - - - 0.24 0.57 0.16 0.66 0.11 0.03 0.00 -
    Total - - - - 8.23 2.48 2.85 5.22 4.18 8.90 6.03 -
    Station 39, 1990
    S Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    B - - - - 7.53 0.78 0.18 0.43 0.17 0.72 1.03 -
    C - - - - 0.01 0.02 0.04 0.25 0.04 0.02 0.02 -
    C - - - - 0.00 0.02 0.20 3.05 2.60 0.32 0.01 -
    P - - - - 0.12 0.47 0.03 0.17 0.17 0.07 0.02 -
    Total - - - - 7.66 1.29 0.45 3.90 2.98 1.13 1.08 -
  • Biomass of benthos [g m-2 (wet wt.)](8)

    Station 34
    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    1987 - - - - - 14.5 10.1 6.4 16.7 21.0 33.4 -
    1988 - - - - 36.4 - 6.8 - 35.9 - - -
    1989 - - - - 24.2 23.6 15.5 15.9 7.1 8.4 12.1 -
    Station 39
    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
    1988 - - - - 6.41 - 2.16 - 3.38 - - -
    1989 - - - - 8.22 9.45 5.80 4.45 6.01 8.25 18.54 -
    Comparison of biomass of main taxa between the submerged bed of the R. Volga (station 34) and the flooded plain area (station 39)
    Group Station 34 Station 39
    1987 1988 1989 1988 1989
    Oligochaeta 13.7 25.3 13.1 1.6 5.0
    Chironomidae 1.0 0.9 1.1 1.0 0.7
    Polychaeta 1.0 - 0.2 0.2 0.1
    Mollusca 1.0 0.1 1.3 0.4 1.8
    Dreissena - - 12.2 23.7 110.2
    Monodonta 0.2 - - 0.4 -
    Biomass of benthos in different reaches
    Reach Station 1983 1984 1985
    I 9 0.7 2.6 0.9
    V 21 48.6 41.3 37.1
    IX 34 15.2 30.8 -
F5 FISHERY PRODUCTS
  • Annual fish catch [metric tons](sport-fishing catch excluded)

  • 1988: 5,928.
F6 PAST TRENDS
  • Primary production and decomposition
    Averages for the vegetation period and for the whole reservoir (8, 10, 11, 12)
    1957 1958 1965 1966 1967 1968 1969 1970 1971
    Phytoplankton production 0.67 0.78 0.32 0.61 0.49 0.45 0.34 0.45 0.29
    Organic matter decomposition 1.34 1.40 - 1.68 1.07 0.61 0.75 0.80 0.74

    Fig. EUR-54-8
    Trends of the mean biomass of bacterioplankton and phytoplankton and annual fish catch (1, 8).

    Trends of biomass [g m-3] of two phytoplankton groups* (averaged for the vegetation period and for the whole reservoir)(8)
    Year Bacillariophyta Cyanophyta Total
    1975 5.67 5.12 11.91
    1976 5.31 1.48 7.25
    1978 7.49 1.30 9.25
    1981 4.26 3.70 8.64
    1982 3.01 1.95 5.57
    1983 4.27 2.40 7.38
    1984 4.57 3.81 8.74
    * Biomass of other phytoplankton groups is smaller than 0.01 g m-3.

G. SOCIO-ECONOMIC CONDITIONS

G1 LAND USE IN THE CATCHMENT AREA* (13) (1989)
    Area [km2] [%]
    Agricultural land
    - Crop field 475 33
    - Meadow 355 24
    - Irrigated land 61 4
    - Pasture 560 39
    Total 1,451 100
    * Agricultural land only.
  • Main species of forest and scrub vegetation
    Salix alba, S. acutifolia, Populus nigra, P. alba, P. tremula, Ulmus laevis, Betula pendula, Viburnum opulus, Quercus robur, Abies sibirica, Picea abies, P. obovata, Pinus sylvestris, Acer tataricum (8).
  • Main species of herbaceous vegetation
    Calamagrostis epigeios, Bromus squarrosus, Stipa pennata, Gypsophila paniculata, Helichrysum arenarium, Centaurea sumensis, Chondrilla juncea, Dianthus polymorphus, Artemisia absinthium, Salvia tesquicola, Veronica spicata, Astragalus cicer, Onobrychis arenaria, Hedysarum grandiflorum, Campanula sibirica, Scabiosa isetensis, Gurinea cyanoides, Aster amellus.
  • Main kinds of crops: Wheat, rye, sunflower, potato, maize.

G2 INDUSTRIES IN THE CATCHMENT AREA (13)
    Main types of industries are building industry, chemical and oil processing industry, agricultural industry and municipal services.
G3 POPULATION IN THE CATCHMENT AREA (8) (1989)
    Population [x1.0E+3] Population density[km-2] Major cities
    Urban 5,523 - Kazan, Ulianovsk, Naberezhnye Chelny, Tolyatty
    Rural 2,341 -
    Total 7,864 32.1

H. LAKE UTILIZATION

H1 LAKE UTILIZATION
    Navigation and transportation, tourism and sightseeing, and recreation (swimming, sport-fishing, yachting).
H2 THE LAKE AS WATER RESOURCE (13) (1989)
    Use rate [1.0E+6 m3 yr-1]
    Domestic water 975
    Industrial water 1,753
    Irrigation 915
    Agricultural water 286
    Others 401
    Total 4,330

I. DETERIORATION OF LAKE ENVIRONMENTS AND HAZARDS

I1 ENHANCED SILTATION
  • Extent of damage: None.

  • Supplementary notes
    Mean sedimentation rate is 4 mm yr-1. About 60% of the reservoir bottom had been covered by silt in 1987 (14).
I2 TOXIC CONTAMINATION (8)
  • Main contaminants and their concentrations

    Station 34, surface water, 1989
    Name of contaminant Concentrations [micro l-1]
    Sample no. Mean Range
    Cu 6 3.4 2.4-3.8
    Pb 5 0.5 0.4-1.2
    Ni 6 4.8 1.3-13.8
    Cr 6 0.05 0.01-0.1
    Zn 6 10.8 2.4-23.1
    Cd 6 0.01 0.01
    Station 34, bottom water, 1989
    Name of contaminant Concentrations [micro l-1]
    Sample no. Mean Range
    Cu 6 4.0 2.2-5.5
    Pb 6 0.3 0.1-0.3
    Ni 6 4.9 1.9-9.0
    Cr 6 0.02 0.01-0.1
    Zn 6 12.8 4.1-29.0
    Cd 5 0.01 0.01-0.1
    Reach IX, bottom mud, 1988
    Name of contaminant Concentrations [micro g 1 (wet wt.)]
    0.5N HCl extract HNO3+H2O2 extract
    Sample no. Mean Range Sample no. Mean Range
    Cu 35 12 2-19 30 23 6-34
    Pb 6 10 3-13 30 16 1-28
    Ni 35 14 3-31 30 48 14-72
    Co 35 8 2-12 30 13 5-20
    Cr 35 8 2-14 30 24 1-50
    Zn 35 29 5-61 30 65 19-175
  • DDT concentrations in fish and molluscan tissues [mg kg 1](13) (1985-1986)

    Liver Muscle Brain
    Mollusca
    - Viviparidae - 0.22 2.27*1 -
    Fish
    - Stizostedion volgensis 0.94(0.22-2.65)*2 0.21 (0.10-0.41) 1.47 (0.58-4.06)
    - Abramis ballerus 0.68 (0.12-3.19) 0.15 (0.11-0.18) 6.40 (4.12-17.85)
    - A. brama 1.66 (0.19-6.63) 0.27 (0.19-0.41) 3.41 (2.28-5.17)
    *1 Evaluated for the whole body.
    *2 Mean value (range). Permissible level is 0.2 mg kg 1.
  • Safety standards for contamination of foods or maximum permissible limits of
    toxic substances (16)
    Name of contaminant Maximum permissible limits [mg kg-1] Notes
    Cr 0.2 Natural wet wt. basis
    Zn 10.0
    Ni 0.5
    Cu 5.0
    Pb 0.5
    Cd 0.03
  • Tends of change of contaminant concentration in water for the whole reservoir [mg l-1]

    Year Phenol Mineral oil Surfactants Zn Fe Cu Cr6+
    1986 0.006 0.08 0.04 0.004 0.06 0.012 0.002
    1987 0.007 0.08 0.03 0.007 0.06 0.013 0.001
    1988 0.005 0.08 0.02 0.008 0.07 0.013 0.001
    1989 0.004 0.07 0.02 0.011 0.04 0.007 0.001
I3 EUTROPHICATION (17)
  • Nuisance caused by eutrophication
    Unusual algal bloom (Microcystis aeruginosa, Aphanizomenon flos-aquae). Disturbed filtration in cleaning beds for city water due to Melosira and Stephanodiscus bloom.
  • Nitrogen and phosphorus loadings to the reservoir [t y-1](18)

    Sources Industrial*1 Domestic*2 Agricultural Natural Total
    T-N 528.1 797.3 3,568.5 2,886.4 7,780.3
    T-P 55.1 103.1 157.2 77.9 393.3
    *1 So-called relatively clean sewage.
    *2 Municipal and settlement wastewater.
  • Supplementary notes
    N and P loadings from point sources were determined only for Reaches VIII and IX. Total N and P inputs to the whole water body were evaluated based on the records of inflow by rivers, precipitation and coast abrasion, and are equal to 61 g N m-2 yr-1 and 7 g P m-2 yr-1. The concentration of chlorophyll a of blue-green algae reaches 180 micro l-1 near point sources of pollutants (Q).

J. WASTEWATER TREATMENTS

J1 GENERATION OF POLLUTANTS IN THE CATCHMENT AREA
    (d) Measurable pollution with wastewater treatment.
J2 APPROXIMATE PERCENTAGE DISTRIBUTION OF POLLUTANT LOADS (13)
    For point sources only
    [%]
    Point sources
    - Municipal (after treatment) 35.8
    - Industrial (with standard treatment) 33.1
    - Conventionally treated water 31.1
    Total 100
J3 SANITARY FACILITIES AND SEWERAGE (Q)
    Primary treatment facilities: receiving box, gratings, quit chambers, primary settling basins.
    Secondary treatment facilities: oxidation tanks.
    Integrated treatment facilities: secondary settling basins, chlorine treatment.

M. LEGISLATIVE AND INSTITUTIONAL MEASURES FOR UPGRADING LAKE ENVIRONMENTS (Q)

M1 NATIONAL AND LOCAL LAWS CONCERNED
  • Names of the laws (the year of legislation)
    1. Basis of Water Laws of the USSR and Republics (1970)
    2. On the Protection of Nature in Russia Federation (1960)
    3. The Resolution of the USSR Council of Ministers "On Measures Preventing the Sewage Flow into the Basins of Rivers Volga and Ural" (1972)
    4. The Resolution of the USSR Council of Ministers "On Improvement of Ecological Conditions in Tolyatty " (1988)
    5. The Resolution of the Kujbyshev Municipality "On Municipality's Tasks on Environmental Protection and Use of the Natural Resources" (1987)
M2 INSTITUTIONAL MEASURES
  1. USSR State Hydrometeorologic Service
  2. Committee on the River Volga Saving (formed 1989 in Moscow)
  3. Volga Basin and Northern Part of the Caspian Sea Ecologic Parliament (formed 1990 in Moscow)
M3 RESEARCH INSTITUTES ENGAGED IN THE LAKE ENVIRONMENT STUDIES
  1. Volga Basin Ecology Institute of the USSR Academy of Sciences, Tolyatty
  2. Kazan Biology Institute, Kazan Scientific Centre of the USSR Academy of Sciences, Kazan
  3. Tatar Department of the Lake and River Fishery State Scientific Institute, Kazan
  4. Tolyatty Hydrometeorological Observatory, Goskomgydromet of USSR, Tolyatty
  5. Kazan State University, Kazan
  6. Ulianovsk Pedagogical Institute, Ulianovsk
  7. Volga-Kama State Reserve, Zelenodolsk
  8. Samara Medical Institute, Samara
  9. Zhiguly Reserve, Zhiguliovsk

N. SOURCES OF DATA

  1. Questionnaire filled by Dr. L. A. Vyhrystiuk, Volga Basin Ecology Institute of USSR Academy of Sciences, Tolyatty, USSR.
  2. The Reservoir Kujbyshevskoe (1983) Publishing House "Nauka", St. Petersburg. 214 pp.*
  3. Obedientova, G. V. (1977) The Cycles of Erosion and Formation of the Volga Valley. Moscow. 240 pp.*
  4. Chigirinskaya, K. P. (1963) Characteristics of the storm conditions formed in the Reservoir Kujbyshevskoe. Proc. of the First Scientific -Technical Conf. on Research of the Reservoir Kujbyshevskoe, Issue 2: 135 144. Kujbyshev.*
  5. Hydrometeorological Regime of the USSR Lakes and Reservoirs: Kujbyshevskoe and Saratovskoe (1978). Publishing House "Hydrometeoizdat", St. Petersburg. 269 pp.*
  6. Borovkova, T. N., Nikulin, P. I. & Shirokov, V. M. (1962) The Reservoir Kujbyshevskoe (Short Physiographic Characteristics), p. 92. Kujbyshev.*
  7. Chigirinsky, P. J. (1971) Investigation of the Hydrometeorological conditions of waves and currents formed in the Reservoir Kujbyshevskoe. Collected Articles by the Tolliatinskaya Observatory, Issue 9: 121 155. Publishing House "Hydrometeoizdat", St. Petersburg.*
  8. Tolliatinskaya Hydrometeorological Observatory data.
  9. Volga Basin Ecology Institute of USSR Academy of Sciences data.
  10. Evatin, A. V. (1973) The oxygen utilization and organic matter destruction in the bottom sediments of the Reservoir Kujbyshevskoe. Hydrobiologicheskij Journal, 9 (5): 40 438.*
  11. Salmanov, M. A. & Sorokin, Ju. I. (1962) Primary production in the Reservoir Kujbyshevskoe. Proc. USSR Acad. Sci., 4: 603 613.*
  12. Pyrina, I. L. (1966) Primary phytoplankton production in the Reservoirs Ivankovshoe, Rybinskoe and Kujbyshevskoe in dependence on some factors. Production and the Cycle of the Organic Matter in the Interior Reservoirs, pp. 249 270. Publishing House "Nauka", Moscow -St. Petersburg.*
  13. Evatin, A. V. (1974) Phytoplankton production and organic matter destruction in the Reservoir Kujbyshevskoe. Hydrobiologicheskij Journal, 10 (3): 65 69.*
  14. Studying the Main Components of the Water Ecosystem in the Central Part of the Reservoir Kujbyshevskoe (1989). Proc. of the Kazan Univ. 146 pp.*
  15. Vyhrystiuk, L. A. (1991) The current state of the bottom deposits. Landscape Dynamic in the Reservoir Kujbyshevskoe Zone, p. 22. Publishing House "Nauka", St. Petersburg.
  16. Data on the biology by the Inland Water Institute of the USSR Academy of Sciences, Borok.
  17. The sanitary norms and rules 42 123 40898 (1986). USSR Minzdrav.
  18. The Ecology of Phytoplankton in the Reservoir Kujbyshevskoe (1989). Publishing House "Nauka", St. Petersburg.
  19. Vyhrystiuk, L. A. (1989) The influence of the technogenical loading upon water quality of the Reservoir Kujbyshevskoe. Ecological Problems of the River Volga, Part I, pp. 46 48. Saratov.

  20. * Printed in Russian.